Identification

Title

Similarity and differences in morphology and mechanisms of the foF2 and TEC disturbances during the geomagnetic storms on 26-30 September 2011

Abstract

This study presents an analysis of the ground-based observations and model simulations of ionospheric electron density disturbances at three longitudinal sectors (eastern European, Siberian and American) during geomagnetic storms that occurred on 26-30 September 2011. We use the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) to reveal the main mechanisms influencing the storm-time behavior of the total electron content (TEC) and the ionospheric F2 peak critical frequency (foF2) during different phases of geomagnetic storms. During the storm's main phase the long-lasting positive disturbances in TEC and foF2 at sunlit mid-latitudes are mainly explained by the storm-time equatorward neutral wind. The effects of eastward electric field can only explain the positive ionospheric storm in the first few hours of the initial storm phase. During the main phase the ionosphere was more changeable than the plasmasphere. The positive disturbances in the electron content at the plasmaspheric heights (800-20 000 km) at high latitudes can appear simultaneously with the negative disturbances in TEC and foF2. The daytime positive disturbances in foF2 and TEC occurred at middle and low latitudes and at the Equator due to n(O) = n(N-2) enhancement during later stage of the main phase and during the recovery phase of the geomagnetic storm. The plasma tube diffusional depletion and negative disturbances in electron and neutral temperature were the main formation mechanisms of the simultaneous formation of the positive disturbances in foF2 and negative disturbances in TEC at low latitudes during the storm's recovery phase.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d73r0xd6

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-08-09T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:33:29.155838

Metadata language

eng; USA