Identification

Title

Sensitivity of meteorological skill to selection of WRF‐Chem physical parameterizations and impact on ozone prediction during the Lake Michigan Ozone Study (LMOS)

Abstract

Ozone concentrations in excess of health-based standards occur along the coastline of Lake Michigan. A complex pattern of ozone precursor emissions interfaces with a complex meteorological environment, presenting a challenge for air quality management and simulation. Precursors are transported into a shallow, stable boundary layer over the lake. This is followed by ozone formation and transport back onshore through a combination of synoptic and lake breeze winds. In this study, we use measurements during the Lake Michigan Ozone Study 2017 (LMOS) to quantitatively evaluate the Weather Research and Forecasting with Chemistry (WRF-Chem) model at 4 km horizontal resolution for key features of high ozone episodes over Southern Lake Michigan, with a focus on meteorological performance. WRF-Chem showed good performance and successful reproduction of meteorological fields and clouds. Lake breeze model skill was inconsistent, with both good and poor performance depending on site and day. The combination of Noah land surface model and High-Resolution Rapid Refresh meteorology gave the best performance with the mean bias of -0.5 degrees C for temperature, -0.6 degrees C for dewpoint temperature, and -0.3 m/s for wind speed along the western coast of Lake Michigan during the daytime. For ozone, WRF-Chem was biased low (-4.4 ppb mean bias for daytime ozone) and underestimated hourly peak ozone. In some cases, ozone bias can be attributed to transport and lake breeze errors. Average ozone concentration showed minor (<2 ppb) sensitivity to changes to meteorology initial and boundary conditions or the land surface model.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7c82dg9

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-03-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Geophysical Union

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:24:52.183812

Metadata language

eng; USA