Identification

Title

SSP‐based land‐use change scenarios: A critical uncertainty in future regional climate change projections

Abstract

To better understand the role projected land-use changes (LUCs) may play in future regional climate projections, we assess the combined effects of greenhouse-gas (GHG)-forced climate change and LUCs in regional climate model (RCM) simulations. To do so, we produced RCM simulations that are complementary to the North-American Coordinated Regional Downscaling Experiment (NA-CORDEX) simulations, but with future LUCs that are consistent with particular Shared Socioeconomic Pathways (SSPs) and related to a specific Representative Concentration Pathway (RCP). We examine the state of the climate at the end of the 21st century with and without two urban and agricultural LUC scenarios that follow SSP3 and SSP5 using the Weather Research and Forecasting (WRF) model forced by one global climate model, the MPI-ESM, under the RCP8.5 scenario. We find that LUCs following different societal trends under the SSPs can significantly affect climate projections in different ways. In regions of significant cropland expansion over previously forested area, projected annual mean temperature increases are diminished by around 0.5 degrees C-1.0 degrees C. Across all seasons, where urbanization is high, projected temperature increases are magnified. In particular, summer mean temperature projections are up to 4 degrees C-5 degrees C greater and minimum and maximum temperature projections are increased by 2.5 degrees C-6 degrees C, amounts that are on par with the warming due to GHG-forced climate change. Warming is also enhanced in the urban surroundings. Future urbanization also has a large influence on precipitation projections during summer, increasing storm intensity, event length, and the overall amount over urbanized areas, and decreasing precipitation in surrounding areas.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7hm5cvn

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:14:09.344271

Metadata language

eng; USA