Identification

Title

Land surface modeling as a tool to explore sustainable irrigation practices in Mediterranean fruit orchards

Abstract

Irrigation strongly influences land-atmosphere processes from regional to global scale. Therefore, an accurate representation of irrigation is crucial to understand these interactions and address water resources issues. While irrigation schemes are increasingly integrated into land surface models, their evaluation and further development remains challenging due to data limitations. This study assessed the representation of field-scale irrigation using the Community Land Model version 5 (CLM5) through comparison of observed and simulated soil moisture, transpiration and crop yield. Irrigation was simulated by (a) adjusting the current irrigation routine and (b) by implementing a novel irrigation data stream that allows to directly use observed irrigation amounts and schedules. In a following step, the effect of different irrigation scenarios at the regional scale was simulated by using this novel data stream. At the plot scale, the novel irrigation data stream performed better in representing observed SM dynamics compared to the current irrigation routine. Nonetheless, simplifications in crop and irrigation representation and uncertainty in the relation between water stress and yield currently limit the ability of CLM5 for field-scale irrigation scheduling. Still, the simulations revealed valuable insights into model performance that can inform and improve the modeling beyond the field scale. At regional scale, the simulations identified irrigation priorities and potential water savings. Furthermore, application of LSMs such as CLM5 can help to study the effects of irrigation beyond water availability, for example, on energy fluxes and climate, thus providing a powerful tool to assess the broader implications of irrigation at larger scale.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7ww7nxs

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:00:50.412385

Metadata language

eng; USA