Identification

Title

Mechanisms of regional Arctic sea ice predictability in two dynamical seasonal forecast systems

Abstract

Research over the past decade has demonstrated that dynamical forecast systems can skillfully predict panArctic sea ice extent (SIE) on the seasonal time scale; however, there have been fewer assessments of prediction skill on user-relevant spatial scales. In this work, we evaluate regional Arctic SIE predictions made with the Forecast-Oriented Low Ocean Resolution (FLOR) and Seamless System for Prediction and Earth System Research (SPEAR_MED) dynamical seasonal forecast systems developed at the NOAA/Geophysical Fluid Dynamics Laboratory. Compared to FLOR, we find that the recently developed SPEAR_MED system displays improved skill in predicting regional detrended SIE anomalies, partially owing to improvements in sea ice concentration (SIC) and thickness (SIT) initial conditions. In both systems, winter SIE is skillfully predicted up to 11 months in advance, whereas summer minimum SIE predictions are limited by the Arctic spring predictability barrier, with typical skill horizons of roughly 4 months. We construct a parsimonious set of simple statistical prediction models to investigate the mechanisms of sea ice predictability in these systems. Three distinct predictability regimes are identified: a summer regime dominated by SIE and SIT anomaly persistence; a winter regime dominated by SIE and upper-ocean heat content (uOHC) anomaly persistence; and a combined regime in the Chukchi Sea, characterized by a trade-off between uOHC-based and SIT-based predictability that occurs as the sea ice edge position evolves seasonally. The combination of regional SIE, SIT, and uOHC predictors is able to reproduce the SIE skill of the dynamical models in nearly all regions, suggesting that these statistical predictors provide a stringent skill benchmark for assessing seasonal sea ice prediction systems.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7wm1j9f

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:41:08.687302

Metadata language

eng; USA