Radiation dry bias correction of Vaisala RS92 humidity data and its impacts on historical radiosonde data
The Vaisala RS92 radiosonde is the most widely used type of sonde in the current global radiosonde network. One of the largest biases in the RS92 humidity data is its daytime solar radiation dry bias (SRDB). An algorithm [referred to as NCAR radiation bias correction (NRBC)] was developed to correct the SRDB based on a more complicated algorithm developed by the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN). The NRBC to relative humidity (RH) is a function of the measured RH and temperature, and the temperature solar radiation correction. The latter varies with pressure, season, and time of the day. The RH correction has a mean magnitude of about 2%-4% and 6%-8% in the lower-midtroposphere and upper troposphere, respectively. The NRBC is evaluated against the GRUAN-corrected RS92 data and the ground-based GPS-estimated precipitable water (PW). The corrected RH agrees with the GRUAN data within ±0.5% on average, with standard deviations of about 1%-2% and 2%-6% in the lower-midtroposphere and upper troposphere, respectively. The NRBC leads to reduced mean biases, and better agreement with the GPS PW and its diurnal cycle. The NRBC has been applied to historical radiosonde data at 65 stations. The radiosonde humidity data, both with and without the NRBC, are homogenized using the method of Dai et al. (2011). The NRBC results in consistently elevated RHs throughout the whole record in the homogenized data. This could have a significant impact on global reanalysis products when they are assimilated into the reanalysis models. However, the NRBC has insignificant effects on the long-term trends as the correction is primarily for mean biases.
document
http://n2t.net/ark:/85065/d7959jcm
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2013-02-01T00:00:00Z
Copyright 2013 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:49:29.936525