Identification

Title

The seasonality of the Great Plains low-level jet and ENSO relationship

Abstract

This study investigates the seasonality of the relationship between the Great Plains low-level jet (GPLLJ) and the Pacific Ocean from spring to summer, using observational analysis and coupled model experiments. The observed GPLLJ and El Niño–Southern Oscillation (ENSO) relation undergoes seasonal changes with a stronger GPLLJ associated with La Niña in boreal spring and El Niño in boreal summer. The ability of the GFDL Forecast-Oriented Low Ocean Resolution (FLOR) global coupled climate model, which has the high-resolution atmospheric and land components, to simulate the observed seasonality in the GPLLJ-ENSO relationship is assessed. The importance of simulating the magnitude and phase locking of ENSO accurately in order to better simulate its seasonal teleconnections with the Intra-Americas Sea (IAS) is demonstrated. This study explores the mechanisms for seasonal changes in the GPLLJ-ENSO relation in model and observations. It is hypothesized that ENSO affects the GPLLJ variability through the Caribbean low-level jet (CLLJ) during the summer and spring seasons. These results suggest that climate models with improved ENSO variability would advance our ability to simulate and predict seasonal variations of the GPLLJ and their associated impacts on the United States.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7gh9k4w

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2015-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2015 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:12:12.329417

Metadata language

eng; USA