Tropospheric water vapor, convection, and climate
Recent progress is reviewed in the understanding of convective interaction with water vapor and changes associated with water vapor in warmer climates. Progress includes new observing techniques (including isotopic methods) that are helping to illuminate moisture-convection interaction, better observed humidity trends, new modeling approaches, and clearer expectations as to the hydrological consequences of increased specific humidity in a warmer climate. A theory appears to be in place to predict humidity in the free troposphere if winds are known at large scales, providing a crucial link between small-scale behavior and large-scale mass and energy constraints. This, along with observations, supports the anticipated water vapor feedback on climate, though key uncertainties remain connected to atmospheric dynamics and the hydrological consequences of a moister atmosphere. More work is called for to understand how circulations on all scales are governed and what role water vapor plays. Suggestions are given for future research.
document
http://n2t.net/ark:/85065/d7j966tq
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2010-04-13T00:00:00Z
Copyright 2010 American Geophysical Union.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:26:21.780715