Identification

Title

Simulation of ULF wave modulated electron precipitation during the 17 March 2015 storm

Abstract

Ultra Low Frequency (ULF) waves play an important role in radiation belt dynamics, modulation of higher frequency wave modes and energetic particle precipitation. We investigate the effects of ULF waves on electron precipitation using a global magnetohydrodynamic (MHD) model and a test particle code. ULF waves are simulated using the Lyon‐Fedder‐Mobarry (LFM) global MHD model coupled to the Rice Convection Model with solar wind parameters provided as upstream boundary conditions. The MHD fields are used to trace electron trajectories as test particles in the Dartmouth rbelt3d model (Kress et al., 2007, https://doi.org/10.1029/2006JA012218 ). We simulate the 17 March 2015 storm, the largest geomagnetic storm of Solar Cycle 24 with a Dst of −223 nT, to examine electron precipitation associated with recurring ULF oscillations. The simulation results show that the initial bipolar electric field oscillation observed by Van Allen Probes causes energy dependent electron acceleration and inward radial transport, while the loss cone size increases on the dayside due to magnetopause compression causing precipitation loss across all energies. The subsequent ULF oscillations are more effective in producing precipitation for higher energy electrons that are drift phase bunched due to the initial electric field impulse, with loss continuing to occur on the dusk side where electrons drift in phase with anti‐sunward propagating ULF waves.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d74b35p0

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-02-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;font-weight:normal;" data-sheets-root="1">Copyright 2025 American Geophysical Union (AGU).</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:54:39.770015

Metadata language

eng; USA