Identification

Title

Modifying the mixed layer eddy parameterization to include frontogenesis arrest by boundary layer turbulence

Abstract

Current submesoscale restratification parameterizations, which help set mixed layer depth in global climate models, depend on a simplistic scaling of frontal width shown to be unreliable in several circumstances. Observations and theory indicate that frontogenesis is common, but stable frontal widths arise in the presence of turbulence and instabilities that participate in keeping fronts at the scale observed, the arrested scale. Here we propose a new scaling law for arrested frontal width as a function of turbulent fluxes via the turbulent thermal wind (TTW) balance. A variety of large-eddy simulations (LES) of strain-induced fronts and TTW-induced filaments are used to evaluate this scaling. Frontal width given by boundary layer parameters drawn from observations in the General Ocean Turbulence Model (GOTM) are found qualitatively consistent with the observed range in regions of active submesoscales. The new arrested front scaling is used to modify the mixed layer eddy restratification parameterization commonly used in coarse-resolution climate models. Results in CESM-POP2 reveal the climate model's sensitivity to the parameterization update and changes in model biases. A comprehensive multimodel study is in planning for further testing. Significance StatementThe ocean surface plays a major role in the climate system, primarily through exchange in properties, such as in heat and carbon, between the ocean and atmosphere. Accurate model representation of ocean surface processes is crucial for climate simulations, yet they tend to be too small, fast, or complex to be resolved. Significant efforts lie in approximating these small-scale processes using reduced expressions that are solved by the model. This study presents an improved representation of the ocean surface in climate models by capturing some of the synergy that has been missing between the processes that define it. Results encourage further testing across a wider range of models to comprehensively evaluate the effects of this adjustment in climate simulations.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7tt4vvx

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2023 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:40:48.182568

Metadata language

eng; USA