Identification

Title

Characterizing GPS radio occultation loss of lock due to ionospheric weather

Abstract

Transient loss of lock is one of the key space weather effects on the Global Navigation Satellite System (GNSS). Based on the Constellation Observing System for Meteorology, Ionosphere, and Climate Global Positioning System (GPS) radio occultation (RO) observations during 2007–2011, we have analyzed the signal cycle slip (CS) occurrence comprehensively and its correlation to the ionospheric weather phenomena such as sporadic E (Es), equatorial F region irregularity (EFI), and the ionospheric equatorial ionization anomaly (EIA). The high vertical resolution of RO observations enables us to distinguish the CS resulting from different ionospheric layers clearly on a global scale. In the E layer, the CS is dominated by the Es occurrence, while in the F layer, the CS is mainly related to the EIA and EFI at low and equatorial latitudes. In the polar region, the CS is primarily related to polar cap electron density gradients. The overall average CS (>6 cycles) occurrence is ~23% per occultation, with the E (50–150 km) and F (150-600 km) layers contributing ~8.3% and ~14.7%, respectively. Awareness of the effect of the ionospheric weather on the CS of the low Earth orbit (LEO)-based GNSS signal could be beneficial to a variety of applications, including the LEO-based GNSS data processing and the corresponding hardware/firmware design.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7ft8nnv

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2016 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T20:49:50.508428

Metadata language

eng; USA