Urban modifications in a Mesoscale Meteorological Model and the effects on near-surface variables in an arid metropolitan region
A refined land cover classification for the arid Phoenix (Arizona) metropolitan area and some simple modifications to the surface energetics were introduced in the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5). The single urban category in the existing 24-category U.S. Geological Survey land cover classification used in MM5 was divided into three classes to account for heterogeneity of urban land cover. Updated land cover data were derived from 1998 Landsat Thematic Mapper satellite images. The composition of the urban land use classes in terms of typical fractions of vegetation and anthropogenic surfaces was determined from ground-truth information, allowing a variety of moisture availability for evaporation by land cover class. Bulk approaches for characteristics of the urban surface energy budget, such as heat storage, the production of anthropogenic heat, and radiation trapping, were introduced in MM5's Medium Range Forecast boundary layer scheme and slab land surface model. A 72-h simulation was performed with MM5 on a 2 km X 2 km grid during June 1998. The new land cover classification had a significant impact on the turbulent heat fluxes and the evolution of the boundary layer and improved the capability of MM5 to simulate the daytime part of the diurnal temperature cycle in the urban area. The nighttime near-surface air temperatures were improved significantly by adding radiation trapping, heat storage, and anthropogenic heating to the model.
document
https://n2t.org/ark:/85065/d79k4c19
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2005-09-01T00:00:00Z
Copyright 2005 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-17T17:07:09.711671