Identification

Title

Nonlinear impacts of surface exchange coefficient uncertainty on tropical cyclone intensity and air‐sea interactions

Abstract

Tropical cyclone maximum intensity is believed to result from a balance between the surface friction, which removes energy, and a temperature/moisture (enthalpy) difference between the sea surface and the air above it, which adds energy. The competing processes near the air-sea interface are controlled by both the near surface wind speed and the surface momentum (C-d) and enthalpy (C-k) exchange coefficients. Unfortunately, these coefficients are currently highly uncertain at high wind speeds. Tropical cyclone winds also apply a force on the ocean surface, which results in ocean surface cooling through vertical mixing. Using coupled atmosphere-ocean and uncoupled (atmosphere only) ensemble simulations we explore the complex influence of uncertain surface exchange coefficients on storm-induced ocean feedback and tropical cyclone intensity. We find that the magnitude of ocean cooling increases with storm intensity and C-d. Additionally, the simulated maximum wind speed uncertainty does not necessarily decrease when ocean feedback are considered.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7vh5s2c

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-02-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:35:55.653397

Metadata language

eng; USA