Identification

Title

Modeled IMF By effects on the polar ionosphere and thermosphere coupling

Abstract

There is still an inadequate understanding of how the interplanetary magnetic field (IMF) east-west component (B-y) affects thermospheric composition, and other ionospheric and thermospheric fields in a systematic way. Utilizing the state-of-art first-principles Coupled Magnetosphere Ionosphere Thermosphere (CMIT) modeling and TIMED/Global Ultraviolet Imager (GUVI)-observed Sigma O/N-2 covering an entire solar cycle (year 2002-2016), as well as a neutral parcel trajectory tracing technique, we emphasize that not only the direction of B-y, but also its strength relative to the IMF north-south component (B-z) that has important effects on high latitude convection, Joule heating, electron density, neutral winds, and neutral composition patterns in the upper thermosphere. The Northern Hemisphere convection pattern becomes more twisted for positive B-y cases than negative cases: the dusk cell becomes more rounded compared with the dawn cell. Consequently, equatorward neutral winds are stronger during postmidnight hours in negative B-y cases than in positive B-y cases, creating a favorable condition for neutral composition disturbances (characterized by low Sigma O/N-2) to expand to lower latitudes. This may lead to a more elongated Sigma O/N-2 depletion area along the morning-premidnight direction for negative B-y conditions compared with the positive B-y conditions. Backward neutral parcel trajectories indicate that a lower Sigma O/N-2 parcel in negative B-y cases comes from lower altitudes, as compared with that for positive B-y cases, leading to larger enhancements of N-2 in the former case.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7n30165

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:07:18.605280

Metadata language

eng; USA