Identification

Title

The structure and evolution of Hurricane Elena, 1985. Part II: Convective asymmetries and evidence for vortex Rossby waves

Abstract

A portable data recorder attached to the Weather Surveillance Radar-1957 (WSR-57) in Apalachicola, Florida, collected 313 radar scans of the reflectivity structure within 150 km of the center of Hurricane Elena (in 1985) between 1310 and 2130 UTC 1 September. This high temporal and spatial (750 m) resolution dataset was used to examine the evolution of the symmetric and asymmetric precipitation structure in Elena as the storm rapidly strengthened and attained maximum intensity. Fourier decomposition of the reflectivity data into azimuthal wavenumbers revealed that the power in the symmetric (wavenumber 0) component dominated the reflectivity pattern at all times and all radii by at least a factor of 2. The wavenumber 1 asymmetry accounted for less than 20% of the power in the reflectivity field on average and was found to be forced by the environmental vertical wind shear. The small-amplitude wavenumber 2 asymmetry in the core was associated with the appearance and rotation of an elliptical eyewall. This structure was visible for nearly 2 h and was noted to rotate cyclonically at a speed equal to half of the local tangential wind. Outside of the eyewall, individual peaks in the power in wavenumber 2 were associated with repeated instances of cyclonically rotating, outward-propagating inner spiral rainbands. Four separate convective bands were identified with an average azimuthal velocity of 25 m s⁻¹, or ~68% of the local tangential wind speed, and an outward radial velocity of 5.2 m s⁻¹. The azimuthal propagation speeds of the elliptical eyewall and inner spiral rainbands were consistent with vortex Rossby wave theory. The elliptical eyewall and inner spiral rainbands were seen only in the 6-h period prior to peak intensity, when rapid spinup of the vortex had produced an annular vorticity profile, similar to those that have been shown to support barotropic instability. The appearance of an elliptical eyewall was consistent with the breakdown of eyewall vorticity into mesovortices, asymmetric mixing between the eye and eyewall, and a slowing of the intensification rate. The inner spiral rainbands might have arisen from high eyewall vorticity ejected from the core during the mixing process. Alternatively, because the bands were noted to emanate from the vertical shear-forced deep convection in the northern eyewall, they could have formed through the axisymmetrization of the asymmetric diabatically generated eyewall vorticity.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7j38svw

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2006-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2006 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:09:02.145964

Metadata language

eng; USA