Identification

Title

Statistical theory on the functional form of cloud particle size distributions

Abstract

Several functional forms of cloud particle size distributions (PSDs) have been used in numerical modeling and remote sensing retrieval studies of clouds and precipitation, including exponential, gamma, lognormal, and Weibull distributions. However, there is no satisfying theoretical explanation as to why certain distribution forms preferentially occur instead of others. Intuitively, the analytical form of a PSD can be derived by directly solving the general dynamic equation, but no analytical solutions have been found yet. Instead of a process-level approach, the use of the principle of maximum entropy (MaxEnt) for determining the theoretical form of PSDs from the perspective of system is examined here. MaxEnt theory states that the probability density function with the largest information entropy among a group satisfying the given properties of the variable should be chosen. Here, the issue of variability under coordinate transformations that arises using the Gibbs-Shannon definition of entropy is identified, and the use of the concept of relative entropy to avoid these problems is discussed. Focusing on cloud physics, the four-parameter generalized gamma distribution is proposed as the analytical form of a PSD using the principle of maximum (relative) entropy with assumptions on power-law relations among state variables, scale invariance, and a further constraint on the expectation of one state variable (e.g., bulk water mass). The four-parameter generalized gamma distribution is very flexible to accommodate various type of constraints that could be assumed for cloud PSDs.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7nv9n38

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:36:36.186403

Metadata language

eng; USA